www.rsc.org/obc

Lactone-free ginkgolides via regioselective DIBAL-H reduction[†]

Hideki Ishii, Sergei V. Dzyuba* and Koji Nakanishi*

Department of Chemistry, Columbia University, 3000, Broadway, New York, NY, 10027, USA. E-mail: svd2102@columbia.edu; kn5@columbia.edu; Fax: +1 212 932 8273; Tel: +1 212 854 2169

Received 29th June 2005, Accepted 12th August 2005 First published as an Advance Article on the web 30th August 2005

The lactone rings of ginkgolide A are converted into corresponding tetrahydrofuran moieties *via* DIBAL-H reduction followed by deoxygenation of the formed lactols with Et_3SiH -BF₃·Et₂O to produce a series of lactone-free ginkgolides.

Ginkgolides (Fig. 1),¹ the main active ingredients of *Ginkgo* biloba extract, are attracting considerable attention in recent years due to their unique biological properties.^{1,2}

Fig. 1 Major ginkgolides from Ginkgo biloba leaf extract.

Extensive derivatization of ginkgolide hydroxylfunctionalities has been performed over the years to further extend their applications as ligands.^{1,3} A complement to these efforts is modification of the ginkolide structure itself, to yield core-modified ginkgolides. The first example of a skeletal modification was reported in the late 60s, when "GA triether" 1‡ was accidentally obtained upon LiAlH₄ reduction (to an octaol) followed by pyrolysis; this triether played a central role in establishing the pentacyclic cage skeleton.⁴ Recently, we have shown that lactone C of GB derivatives can be exclusively

† Electronic supplemental information (ESI) available: Experimental procedures and characterization data. See http://dx.doi.org/ 10.1039/b509129b transformed into the corresponding lactol *via* nucleophilic attack by NaBH₄ or Grignard reagents.⁵

From a biomedical point of view, our interest in *Ginkgo biloba* extract and ginkgolides has in part been driven by the findings that they are able to suppress the progression of Alzheimer's disease.⁶ However, to the best of our knowledge, only native ginkgolides have been used in those studies, and structure–activity relationships are yet to be established.

We have recently demonstrated that **GA** triether **1** is capable of mimicking the effect of **GA** in protecting hippocampal neuronal cell cultures from the β -amyloid induced impairment of long-term potentiation.⁷ An increased hydrophobicity of **1** should also facilitate its cell wall permeability, thus making it a more viable candidate than **GA** for treatment of the dementia. These preliminary data prompted us to explore the ginkgolide lactone-to-ether conversions in more detail.

We found that the 1967 preparation of **GA** triether **1** gave irreproducible results and was inapplicable for milligram-scale preparations. Furthermore, the formation of other partially reduced ginkgolides, such as **GA** mono- and diethers was not detected. Accordingly, the following reactions were performed to prepare ginkgolides that are lacking lactone moieties.

Among common reducing agents that are known to reduce lactone moieties,⁸ such as DIBAL-H, BH₃, LiAlH₄–AlCl₃ and LiAlH₄–BF₃·Et₂O, DIBAL-H was found to give the minimum amount of side products, while reducing the lactone rings. After adjustment of the excess DIBAL-H to 25 equivalents, all **GA** was consumed and trilactol **2** was isolated as the major product (Scheme 1). According to ¹H NMR data, the reduction of lactone C took place in a stereoselective manner, whereas both lactones F and E were transformed into *ca*. 1 : 1 mixture of epimers. **GA** trilactol **2** was subsequently converted into **GA** triether **1** using Et₃SiH–BF₃·Et₂O. This preparation, with a 58% overall yield, was reproducible and applicable in 10 mg–0.5 g

DOI: 10.1039/b509129k

Scheme 1 Preparation of lactone-free GA derivatives. *Reagents and conditions*: (a) DIBAL-H, THF, -78 °C; (b) Et₃SiH, BF₃-Et₂O, CH₂Cl₂, -78 °C to rt, see text for details.

scale. We also attempted a one-pot conversion of **GA** to **GA** triether without success due to formation of an inseparable mixture of **GA** ethers. Adoption of the two-step procedure, *i.e.*, **GA** to **2** to triether **1** (Scheme 1), for the preparation of lactone-free **GB** and **GC** also turned out to be impractical, in view of difficulties in separating the multiple polyol species.

We, therefore, decided to explore the stepwise reduction of **GA** lactone moieties (Scheme 1). From the preparative point of view, ginkgolide's cage-like skeleton, with three lactone rings of potentially different reactivities towards reducing agents, creates a unique scaffold for regioselective lactone to ether transformations.

Reduction of GA using five equivalents of DIBAL-H gave GA F-lactol 3 as the major isolable product as a 3:2 mixture of epimers, determined by ¹H NMR (Scheme 1). Lesser amounts of the reducing agent led to lower yields of 3.

The epimeric mixture of lactol **3** was directly subjected to deoxygenation conditions leading to the formation of **GA** monoether **4** in high yield,§ whose reduction produced **GA** monoether C-lactol **5** as a single *syn*-product (determined by NOE). This indicated that the stereochemistry of 10-hydroxy group of lactone C controls the hydride attack. The lactol **5** was quantitatively deoxygenated to give **GA** diether **6**. The reduction of **6** using ten equivalents of DIBAL-H led to a clean production of **GA** diether E-lactol **7** (as a 1 : 1 mixture of epimers as determined by ¹H NMR of the crude product), which was directly converted to **GA** triether **1** in high yield.¶

To check whether the hydroxy groups of **GA** would affect the regioselectivity of DIBAL-H reduction, we prepared dimethyl **GA**, **8** (Scheme 2). Notably only the use of KH led to production of **8**, whereas no methylation took place in the presence of NaH, K_2CO_3 or AgOTf–Et₃N, all resulting in recovery of **GA**. The DIBAL-H reduction of dimethyl **GA 8** using established conditions (Scheme 1) produced dimethyl **GA F**-lactol **9** as the major product (7 : 3 mixture of epimers, determined by ¹H NMR).

Scheme 2 Preparation of dimethyl GA and its reduction to the lactol.

Thus, the DIBAL-H reduction of GA first occurs at lactone F, followed by reduction of lactone C and finally lactone E. It appears that this type of reduction is sterically controlled, since lactone F is the least hindered and lactone E is the most hindered.

In conclusion, we have demonstrated that **GA** lactone rings can be transformed into tetrahydrofuran moieties *via* regioselective DIBAL-H reduction–deoxygenation with Et_3SiH – $BF_3 \cdot Et_2O$, producing a novel series of core-modified ginkgolide analogs. We are currently evaluating biological potential of these lactone-free ginkgolide derivatives

Financial support from the NIH (GM-MHO68817) and Itochu Corporation, Japan, is gratefully acknowledged. We thank Pharmanex for a generous gift of *BioGinkgo* 7/27[®] extract, the source of GA, GB and GC used in these studies. We are grateful to Dr Yasuhiro Itagaki, for measurements of HRMS and Dr Milan Balaz for helpful discussions.

Notes and references

[‡] The term **GA** triether stands for the three lactone rings of **GA** that were converted into ether rings, and does not represent the total number of ether moieties, which in this case is four. Similarly, the terms **GA** mono- and diethers represent cases where the lactone rings of **GA** are transformed into one and two ether moietes, respectively.

§ Typical experimental procedure. GA (64.5 mg, 0.158 mmol) was dissolved in dry THF (4.0 ml), cooled to -78 °C under argon, and treated with 0.5 ml of DIBAL-H (1 M solution in hexanes). The mixture was allowed to stir for two hours, warmed to room temperature and EtOAc (1.0 ml) was added, followed by 3 M HCl (0.3 ml) and water (5.0 ml). The mixture was extracted with EtOAc (3 \times 20 ml). The organic phase was separated, washed with brine $(3 \times 20 \text{ ml})$, dried (Na₂SO₄), and the solvent was removed under vacuum. GA F-lactol 3 was isolated as a white solid by preparative TLC (hexane-acetone 1:1) as a ca. 3:2 mixture of epimers (50.3 mg, 70% yield); ¹H NMR (MeOH-d₄): major isomer, δ 5.69 (s, 1H), 5.35 (d, J = 5.0 Hz, 1H), 4.96 (s, 1H), 4.78 (d, J = 3.4 Hz, 1H), 4.63 (t, J = 7.7 Hz, 1H), 2.56 (m, 2H), 2.17 (m, 2H), 1.89 (m, 2H), 1.09 (m, 12H); HRMS (FAB) m/z calcd for C₂₀H₂₉O₉Na 433.1475, found 433.1494 [M + Na]. GA F-lactol 3 (50.3 mg, 0.123 mmol) was dissolved in CH₂Cl₂ (6.0 ml), cooled to -78 °C, and Et₃SiH (0.098 ml, 0.61 mmol) was added, followed by BF₃·Et₂O (0.039 ml, 0.304 mmol). The reaction mixture was warmed to room temperature over a 12 h period, quenched with saturated NaHCO₃ (1.0 ml) and water (5.0 ml) and subsequently extracted with EtOAc (3 \times 20 ml). Organic layer was separated, washed with brine $(3 \times 20 \text{ ml})$, dried (Na_2SO_4) and the solvent was removed under vacuum. GA mono ether 4 (45.3 mg, 95% yield) was isolated by preparative TLC (hexane-acetone 1 : 1). 1H NMR $(MeOH-d_4): \delta 5.97 (s, 1H), 4.97 (s, 1H), 4.75 (d, J = 3.4 Hz, 1H), 4.41 (t, J)$ J = 7.8 Hz, 1H), 4.18 (t, J = 7.9 Hz, 1H), 3.63 (dd, J = 10.5, 8.0 Hz, 1H), 2.80 (m, 1H), 2.45 (dd, J = 14.9, 7.0 Hz, 1H), 2.15 (m, 2H), 2.02 (dd, J = 14.9, 7.0 Hz, 1H)15.0, 8.0 Hz, 1H), 1.86 (dd, J = 13.3, 5.6 Hz, 1H), 1.08 (s, 9H), 1.03 (d, J = 6.8 Hz, 3H); ¹³C NMR (MeOH-d₄): 175.18, 173.66, 110.69, 91.89, 89.38, 87.15, 76.24, 69.60, 69.46, 67.54, 38.80, 37.93, 36.30, 32.27, 28.55, 8.51. HRMS (FAB): *m*/*z* calcd for C₂₀H₂₇O₈ 395.1706, found 395.1707. This methodology can only be partially applied towards conversion of GB and GC into the corresponding lactone-free analogs. In case of GB, initial reduction led to the F-lactol (55% yield, as mixture of epimers), and subsequent deoxygenation afforded GB monoether (53% yield); the second reduction produced C-lactol as a single epimer, however, the conversion to the GB diether failed under a variety of conditions. The initial reduction of GC produced corresponding GC F-lactol (64% yield, as a mixture of epimers), but this failed to undergo subsequent deoxygenation.

- 1 K. Stromgaard and K. Nakanishi, *Angew. Chem., Int. Ed.*, 2004, **43**, 1640.
- 2 K. Nakanishi, Bioorg. Med. Chem., 2005, 13, 4987.
- 3 L. Hu, Z. Chen, X. Cheng and Y. Xie, *Pure Appl. Chem.*, 1999, **71**, 1153; S. Jaracz, K. Nakanishi, A. A. Jensen and K. Stromgaard, *Chem. Eur. J.*, 2004, **10**, 1507.
- 4 M. A. Maruyama, Y. Terahara, Y. Itagaki and K. Nakanishi, *Tetrahedron Lett.*, 1967, 4, 303; M. C. Woods, I. Miura, Y. Nakadaira, A. Terahara, M. Maruyama and K. Nakanishi, *Tetrahedron Lett.*, 1967, 4, 321.
- 5 K. Tanaka, K. D. Kester, N. Berova and K. Nakanishi, *Tetrahedron Lett.*, 2005, 46, 531; K. Tanaka, M. Pimentel, N. Berova and K. Nakanishi, *Bull. Chem. Soc. Jpn.*, 2005, in press.
- 6 (a) Y. Luo, J. V. Smith, V. Paramasivam, A. Burdick, K. J. Curry, J. P. Buford, I. Khan, W. J. Netzer, H. Xu and P. Butko, *Proc. Natl. Acad. Sci.*, USA, 2002, **99**, 12197; B. A. Chromy, R. J. Nowak, M. P. Lambert, K. L. Viola, L. Chang, P. T. Velasco, B. W. Jones, S. J. Fernandez, P. N. Lacor, P. Horowitz, C. E. Finch, G. A. Krafft and W. L. Klein, *Biochemistry*, 2003, **42**, 12749; Z.-X. Yao, Z. Han, K. Drieu and V. Papadoppulos, *J. Neutritional Biochem.*, 2004, **15**, 749; (b) T.-f. Lee, C.-f. Chen and L. C. H. Wang, *Phytotherapy Res.*, 2004, **18**, 556.
- 7 O. Vitolo, B. Gong, Z. Cao, H. Ishii, S. Jaracz, K. Nakanishi, O. Arancio, S. V. Dzyuba, M. L. Shelanski, *Neurobiol. Aging*, submitted.
- 8 G. A. Kraus, K. A. Frazier, B. D. Roth, M. J. Taschner and K. Neuenschwander, K., J. Org. Chem., 1981, 46, 2417; J. R. Dias and G. R. Pettit, J. Org. Chem., 1971, 36, 3485; A. M. Maione and M. G. Quaglia, Chem. Ind., 1977, 6, 230; A. P. Marchand, V. S. Kumar and H. K. Hariprakasha, J. Org. Chem., 2001, 66, 2072.